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1.0 Introduction

Currently, quite a few missions are being studied to send satellites to the outer

and inner planets and their moons of the solar system; a large percentage of

these missions will have a landed element. NASA's Origins program, Solar

System Exploration Program and Sun Earth Connection (SEC) program, etc.,

will have a variety of spacecrafts to various solar system planets and their moons
to sample and analyze the related atmospheres as well as the soil once the

lander lands on the body. These sampling missions may involve a lander

element sampling the atmosphere by performing experiments while descending
into the atmosphere or a rover collecting samples to return to Earth or a station

for experimentation on the planet surface. In either of these cases, the pertinent

data generated will have to be sent to the Earth through a communication link.

Communications with the lander during the Entry, Decent and Landing (EDL)

phases of a mission is of paramount importance. This article explores a particular

method of passing through the atmosphere while communicating with the ground

station (DSN station) before landing an instrument package (the lander) on the
surface of the planet or moon of interest.

Whether the future mission desires to land an instrument package on the surface

of the extra-terrestrial body under investigation or it plans to study the body's
atmospheric content as well as its properties, the best scenario is use of either a

parachute or a balloon or some variation thereof. Specially in the case of

missions designed for measuring the atmospheric contents of the body, the

needed measuring instruments must be placed in the atmosphere of the planet
and they need to be there for some appreciable amount of time for the

experiment to be completed and data to be generated. In this case a balloon or a

parachute is ideal because these devices remain in the atmosphere long enough

for the experiments, and also move around with the winds of the planet and
hence samples of the atmosphere may be obtained from various latitudes and

longitudes of the body. Many times the free flying balloon may go higher or lower

in the planet's atmosphere along with the thermals in the atmosphere and this

allows for more detailed measurements. In any case, it is very convenient to put
the measurement instruments in a gondola suspended from the

balloon/parachute and let it descend into the atmosphere of the planet while

taking data. Another advantage of a balloon/parachute is that the lander package

may be delivered to the surface with minimum shocks imparted to the package:
i.e., a soft and more or less controlled landing can be managed.



2.0 Direct Communications to Earth Station or Relay Links?

The data generated by the instruments and the experiments must be

communicated to the ground station either directly or via a relay link. Both

methods have advantages and drawbacks : a tradeoff must be made to select a

particular method.

The direct communications from the balloon/parachute gondola to Earth station

can be effected using a large enough antenna (mostly a large parabolic reflector)

on the gondola and carrying a large enough battery contingent to supply the

needed power to the communications system. However, the power required to

communicate with the Earth station (DSN) is, of course, dependent upon the data

rate generated and needed to be transmitted as well as the data fidelity (Bit Error

Rate, BER) needed along with the range (distance) between the planet of
interest and Earth. More often than not, the communications system for this link

becomes too heavy and bulky for the balloon or the parachute to carry and also

provide a proper decent rate through the atmosphere of the planet to be useful

for the atmospheric sampling and experimentation.

Many times the balloon or the parachute is deployed on a body that was visited

before and communications orbiters are already present around the body in

known orbits. This is especially true for Mars. In any case, even if there is no

communications orbiter present at the time of deployment of the parachute or the

balloon, the stage that brought the lander assembly to the desired heavenly body

can be appropriately designed and scheduled to be used as a communications

relay orbiter to serve the parachute/balloon relay link. The orbiter will also be
needed to relay the data generated by the landed package to the Earth station.

Even when the landed package may have equipment to establish a direct
communications to Earth, the orbiter relay link may serve as a backup

communications link or the direct and relay links may be worked together to
reduce the load on the direct communications link.

3.0 Requirements and Assumptions of the Com System

The exact requirements on the communications system may vary according to

the science requirements of the mission. However, following general

requirements may be levied on the communication system.

A large enough data rate to transmit all the data taken in the

atmosphere within the time available during parachute/balloon
descent.



The orbiter will have a system for tracking coarse/fine position
location of the balloon to minimize antenna pointing loss towards
the balloon/parachute carrying the landed element.

• Proper frequency selection commensurate with the atmospheric
absorption losses.

The antenna on the balloon/gondola should not require pointing,
reducing the electronic equipment necessary for the
balloon/parachute operation. Thus, the antenna used on the
balloon/parachute must essentially be an omni antenna.

It will be assumed that the balloon/parachute will be in the orbital
plane of the orbiter. This assumption not only will reduce the
three dimensional problem to a simpler two dimensional problem
but it will provide the worst also case analysis in terms of the
range between the orbiter and the balloon/parachute. The
telecom system must be designed for the worst case range.

It will be assumed that the orbiter satellite is in a circular orbit at a
particular altitude from the planet's surface. This assumption is
most often true for a lander element carrying mission.

Initially, the carrier ship to the planet or a moon of a planet will carry the balloon
in a deflated manner. The balloon-carrying canister will be released at a
particular instant either by remote control from the ground or by autonomous
operation of the carrier satellite. This canister will have all the equipment for the
atmosphere sampling and the landed experimentation. It will also have
electronics, such as an altimeter, pressure sensors etc., which will help to decide
the altitude at which the balloon must be inflated. As the balloon is inflated, the
canister is discarded. Once the balloon is inflated using the appropriate gas, it
will float and go up and down dependent on the atmospheric conditions.



4.0 Theory

Figure 1 shows a balloon and the attached gondola descending on a

planet's/moon's surface that has appreciable atmosphere. The gondola will be
carrying the instruments necessary to measure the atmospheric content and

perform any experiments. Along with the instruments, the gondola will also carry

the communications equipment to establish the link between the balloon and the
orbiter and send the data to the desired receiver. For the case when the landed

experimentation is required, the gondola will also carry the lander.

As was mentioned before, the communications receiver in this scenario can be

the ground station on the Earth. However, in this article it is assumed that the
balloon or the parachute communicates with the orbiter that is already in its

designated known orbit. Even though the word balloon is used in the following

write up, the analysis is equally valid for the parachute.

This analysis assumes that the antenna used on the balloon/parachute gondola

is a dipole/monopole antenna with the antenna placed vertically. The antenna

may be placed below the gondola, above the parachute or balloon, or on a
special mounting attached to the balloon assembly in some convenient manner.

The particular placement of the antenna may depend upon the shape of the

balloon/parachute and the placement of the communications transponder or

transceiver in the gondola. Large distances between the antenna input terminal
and the transponder/transceiver will be avoided to reduce the line losses which

is a major component of the losses in the communications assembly. A salient
assumption in this analysis is that the fabric of the balloon/parachute will be such

that it will of be totally transparent to the frequency of communication: i.e., even if
there is shadowing of the communications antenna by the balloon/pal'achute

material while communicating with the orbiter, the loss induced due to the

shadowing will be essentially 0 dB. This assumption may be true for some

frequency band more than for other frequency bands. Hence, a judicious

selection of the balloon/parachute material will be assumed. Figure 2 shows only

the dipole antenna in a vertical fashion. All the pertinent parameters necessary to

evaluate the performance of the communications system are defined below.
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A is the position of the gondola in which the telecommunications

system with the dipole antenna is housed. As explained

before, the antenna is assumed to be placed vertically, so that

the toroidal antenna pattern of the antenna will be used for the

analysis to follow.

AP is the altitude of the balloon or parachute (more precisely, of

the antenna) at any time instant. Let this altitude be defined as

z_ hb . Also let c _ rp + hb .

OP is radius of the planet or the moon around which the orbiter is

in a circular orbit A rp = OE.

Z BAJ is the angle from the antenna pattern maximum direction. Let

this angle be defined as A _. It would be good to see from the

geometry of the figure that the following angles are equal in
extent • LBAJ = Z CAJ = ZHAE = ZHAF.

S is the position of the orbiter satellite in its orbit. It is assumed

that the parachute or the balloon is in the orbital plane of the
satellite when the communications between those two takes

place. _ SOL ___Aes gives the position of the satellite with

respect to the defined x axis.

D is the limiting visibility position of the satellite from the

antenna: i.e., line AED is tangential to the planet at the point
E. Thus, the orbiter will not be able to "see" the

balloon/parachute below this point.

PM Is the altitude of the orbiter satellite in a circular orbit _ h.

OM Is the magnitude of the radius vector to the

Aa-- rp+h.

satellite



Figure 1 A balloon with its gondola descending on a planet's surface.
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Figure 2. Balloon/Parachute descent geometry.
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It will be assumed that the telecommunications system is housed in a gondola

that is attached to the balloon or the parachute. In Figure 1, the letter A indicates
the position of the gondola and the antenna that is used for communications with

the orbiter. At this time, it will be assumed that the antenna used is the dipole
antenna. Also, it will be assumed that the parachute or the balloon is present in

the orbital plane of the satellite.

The object here is to compute the satellite visibility time for a given minimum gain

from the given position of the antenna. Towards that end, we will first compute

the coordinates of the points B, C, E, and F, which are shown in the figure

generated by the appropriate lines at an angle o_ to the maximum of the dipole

antenna direction AJ or AH. The coordinates of the points B and F are obtained

by the solution of the following simultaneous nonlinear equations:

y=mx+c

y2 = _X 2 + a 2

(4.1)

Where the quantities 'c' and 'a' are defined in terms of the satellite orbital

geometry and the balloon/parachute altitude as shown above. The parameter m
is defined as:

r. = Tan( )
(4.2)

Similarly, the coordinates of the points C and E are obtained by the solution of

the following simultaneous equations.

y=-mx+c

y2 = _X 2 + a 2

The results of the solution of these equations are given below.

(4.3)



Point B (xl, Y_)"

Xl
l+m 2

mc

+ m 2

a 2 _ c 2

1+ m 2

Yl / c )= m 2 +1..+-

a 2 . c 2
+

l+m 2

(4.4)

Point c (x2, Y2)"

X2 + 2 a 2 _ c 2+ m 21+

Y2 / c)l+m 2 i( mcm 1+m2 2 a 2 _ 0 2 ]+ m 21+

(4.5)

Similarly one can obtain the coordinates of points E and F. The results obtained

are given below.

Point E(x 3 ,Y3):

X 3 /too/I/tool a2c21 + m 2 1 + m 2 + 1 + m 2

Y3 ii mc1a2c2c + m m2 + m2l+m 2 1+ 1+

(4.6)
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Point F(x4 , Y4)"

x4 1+ m2 1 + m 2

a2 _ C2

l+m 2

meY4 = '-m-------_ - m m 21+

a2 _ c 2
+

l+m 2

(4.7)

The angle(x provides the angle from the boresite of the antenna (the maximum

gain direction) for which the communications between the satellite and the

gondola can be sustained. The gain of the dipole antenna at the angle o_ from its

boresite can be computed from the gain function of the dipole antenna given

below in Equation (4.8). In that equation, l is the total length of the dipole and ;L

is the wavelength of the transmission frequency (velocity of light)/Frequency.

= '1,.

2

=/[

=0

co,( cos(,_+o))cos( 
Sin(2 + o_)

[cos/ cO:,n:,0!cos/ !]Sin(_ ) d_

(4.8)

The denominator of the above equation is the normalization factor that must be

computed before the gain predicted by the antenna may be used. The

normalization factor is a function of the dipole length and the transmission
wavelength. Figure 3 plots the value of this factor as a function of the ratio of

dipole length to the transmission wavelength (h/rp) multiplied by=. Thus, for a
half wave dipole, the normalization factor is 1.22. A polynomial approximation to

the denominator can be devised and may be used, as is done below in equation

(4.9), to facilitate the computation of equation (4.8). The loss of precision by
using the approximation is only very little and, hence, can be used with

confidence. Thus, the formula given in Equation (4.9) now can be used to

10
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compute the gain of the dipole antenna in the pointing directiono_. It should be

noted that the parameter qe, used in equations (4.8) and (4.9) is the antenna

efficiency and is in no way connected with the central angle n

G(a)

2q_
cos{ 

0000,, ,0400000 ,,0 ' '
+o 7i l+004  4I 1o

(4.9)

5.0 Visibility of Orbiter for a Gain Angle of the Balloon Antenna

Once it is established that the communications link will be sustained for the given

set of system parameters and the transmit antenna gain G (o_), one can compute

the visibility time of the satellite for this condition: i.e., the time for which the

satellite will remain within the angle o_ above and below the boresite of the dipole

antenna (see Figure 2). It is the time for which the satellite stays within the arc
BC of the circle that is proportional to the central angle z COB in the same figure.

The angle z COB can be computed as follows:

ZCOB =A q = C°s-_[lOBI IOB'OC I]O_C_C

(5.1)

Where OC is the vector from O to C, and OB is the vector from O to B in figure 2.

Using the coordinates of C, B and O (0,0) given in figure 2 one may reduce the

equation (5.1).

12



q _" Cos "1

X_ X 2 + Y12Y2 2]

(5.2)

Using equations (4.4) and (4.5), z COB may be evaluated in terms of m, c, and a
as follows:

(mc /2 a2-c 2 ( mc )2 a2-c 2
X 1 X 2 "- -- 4- . =

1 + m 2 1 + m 2 1 + m 2 1 + m 2

Thus,

Y_ Y2
= C " m2 1 + 1 + m 2 1 + m 21 + m 2 m2 + _ -

(5.3)

8,02c2_m2a xl x2 + Yl Y2 - 1 + m 2 + 1 + m 2 - ' + m 2 a2

(5.4)

Noting that,

loci = _-_24-y_ = a and lOBI = _-_224-y_= a

(5.5)

Using equation (5.4) and (5.5) into equation (5.2) we have

_-cosl[ xlx,+yly,]_Coslrl_m,]
2 - _-,2 2 2L,J-_f4-yl x___ J L1--$-_:m_J

(5.6)
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Now using the definition of 'm' from equation (4.2), we finally arrive at

q = Cos-lrl-m2.]=El+m, j cosl [_ "Tan2(°_)]+T--ann2('-_-)_I

(5.7)

Using some trigonometric identities, this reduces to the following equation.

(C°s2(°c)"Sin2(°_))] [Cos(2 o_= Cos"Cos2(.) [ _--oos_i_ = Cos" .)] = 2
(5.8)

Thus, the visibility angle q is computed to be 2 c_, the total antenna angle

described previously (see Figure 2). Before one computes the visibility time of
the satellite from the balloon or parachute antenna for any angle less than o_

from the boresite of the antenna main lobe, one must consider the limiting case

of the visibility.

In the limiting case, the value of the angle o_ = _,,,,.,,will be such that the line AC in

Figure 2 will be tangential to the planet's surface such as the line AD. The angle

o_,,,, can be computed rather easily from the geometry and is given below..

O[limit [{ cos,( /
(5.9)

.e,m
The coordinates of the point D(x,,m,t , Y,_m,,)can be calculated as follows:

(5.1o)

14



Ira.c/2+I/m.c12+ a2022Xlimit : 1 + mlimi t 1 + mlimi t 1 + rnlimi t

' 2 - mlimit 2 4- 2
Ylimit = 1 + mlimi t 1 + mlimi t 1 4- mtimi t

(5.11)

Using these coordinates, one may compute the central limiting angle defined as

q,mit, as follows:

1"! limit = cos.,[l[O__DD• OBo_11o41
(5.12)

Where D is the vector from O to D and O__BBis the vector from O to B in figure 2.

Using the coordinates of D, B and O (0,0) given in Figure 2, one may reduce

equation (5.12). Noting that,

/ 2 , 2 _12JOE) I = X,,m,,+Y,m,t = a and Io_t = +y_ = a

(5.13)

T_limit --- Cos'llX' Xlim' I: +yla2 Y"m"1

(5.14)

Thus, at a particular altitude of the balloon or the parachute, the central angle

used for the time of visibility will be given by:

(5.15)
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The total visibility time i.e., the time for which the orbiter is visible to the

balloon/parachute assembly can be calculated using the following formula. It

should be noted that the period of the low altitude satellites is generally small

compared to the period of higher altitude satellites, hence, the balloon or the

parachute will easily see the entire traverse of the satellite.

a3/2

Satellite Period = 2 = _ (Sec)

/213 / a_2Visibility Period = Satellite Period _ = 2 11 _ (Sec)

(5.16)

Where the parameter_ is the gravity constant of the planet (known as Kepler's

constant). The values of # are given for many planets in Table 1 below.

Table 1. A table of planetary constants.

Planet
Equitorial
Radius

(km)
Sun 696000

Mercury
Venus
Earth
Mars

Jupiter
Saturn

2487
6187
6378
3380

71370
60400

Uranus 23530

Neptune
Pluto

22320
7016

Orbital Semi

Major Axis
(AU)

.3871

.7233
1.000

Orbital

Eccentricity
E

.2056

.0068

.0617

Mean Solar
Distance
106 (km)

57.9
108.1
149.5

Kepler's
Const, I_

km^3/sec^2
1.327x1011
2.232xl
3.253x105
3.986xl.05 .

1.524 .0934 227.8 4.305x104
5.203 .0482 778 1.268x10 s
9.519 .0539 1426 3.795x107
19.28 .0514 2868 5.820x106
30.17 .0050 4494 6.896xl 06
39.76 .2583 5896 3.587x105

Figure 4 shows a plot of orbiter total visibility angle at the balloon/parachute as a
function of the normalized orbiter altitude. It should be noted that the central

visibility angle predicted by equation (5.15) is the visibility angle of the orbiter at

the balloon/parachute until the orbiter reaches the zenith direction of the

balloon/parachute. Hence, the total visibility angle will be twice that predicted by

the equation (5.15) to account for the visibility during the rise of the orbiter up to

the zenith of the balloon and then from zenith to setting point of the orbiter. This

factor of 2 is already taken into account in Figure 4.
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Figure 4 is drawn for the normalized balloon/parachute altitude of 0.01: i.e., the
balloon/parachute altitude divided by the radius of the planet equals 0.01 = 1%

value. The parameter of the figure that changes from curve to curve is the

angleo_ that is specified in terms of the antenna pattern. It is specified in terms of

the dB down from the maximum of the antenna pattern. Thus, the 0.2 dB down

curve in Figure 4 is drawn for the angle o_ at which the antenna power gain is 0.2

dB down from the maximum of the antenna power pattern.

As an example, the total central visibility angle for the normalized
balloon/parachute altitude of 0.01 with the 3 dB down from the antenna maximum

(boresite) is about 62 degrees when the normalized orbiter altitude is 0.2 = 20%.

It should be noted that the figure is valid only for the normalized
balloon/parachute altitude of 0.01. A series of curves must be drawn for various

values of the normalized balloon/parachute altitude.

Figure 5 shows a plot of orbiter total visibility angle at the balloon/parachute as a

function of the normalized balloon/parachute altitude. This figure is similar to the
Figure 4; However, the independent variable is now the normalized

balloon/parachute altitude. In this figure too, the visibility is the total visibility
angle, including the factor of 2 explained in the Figure 4 description.

Figure 5 is drawn for the normalized orbiter altitude of 0.1: i.e., the orbiter altitude

divided by the radius of the planet equals to 0.1 = 10% value. The parameter of

the figure that changes from curve to curve is the angle o_ that is specified in

terms of the antenna pattern, as in the case of Figure 4.

As an example, the total central visibility angle for the normalized orbiter altitude

of 0.1 with the 3 dB down from the antenna maximum (boresite) is about 63
degrees when the normalized balloon/parachute altitude is 0.02 = 2%. It should

be noted that the figure is valid only for the normalized orbiter altitude of 0.1. A
series of curves must be drawn for various values of the normalized orbiter

altitude. Figure 6 plots a three dimensional graph for the total central visibility
angle (including the factor 2) as a function of the normalized orbital altitude and

normalized balloon/parachute altitude. In both the axis, the normalization factor is

the radius of the planet. This figure is harder to read compared to the Figure 3

and Figure 4 graphs due to its 3 dimensional nature; however, the advantage is
that both the normalized orbiter altitude as well as the normalized

balloon/parachute altitude can change simultaneously.
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Another disadvantage of the 3 dimensional representation is that the surface

drawn in Figure 6 can be drawn for only one dB down number. Figure 6 is drawn

for the angle o_ computed for 3 dB down condition.

Once the total visibility central angle is obtained using the above curves, one

needs some method to convert it into the actual visibility time of the orbiter to the
balloon/parachute assembly. The orbital period of the orbiter will naturally

depend upon the planet's gravity constant, #, and the orbiter altitude above the

surface of the planet. Equation (5.16) given above shows the orbiter's orbital
period and is reproduced below with some modifications.

and

a3/2
Satellite Period = 2= _ (Sec)

q#

(5.17)

/2q ) a _Visibility Period = Satellite Period - _ = 2 q -_ (Sec)

= (2q) x _ t_/- _- I+--. rp .
Y

(Sec)

x / ,Sec,
(5.18)

Equation (5.18) connects the total visibility central angle, 2 q = Tv_,,_,e, with the

actual visibility time in seconds. It will be very useful to compute the visibility

times of the orbiter from the balloon/parachute for any planet. Figure 7 plots the
z" \

function V{_} for the solar system planets; and Figure 8 does the same for the
\r/

solar system moons of interest. To compute the visibility time, the following
procedure is to be followed.
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. Using either Figure 4 or Figure 5, determine the total visibility angle

2 TI = Tv_,_b,,,_Ang,edepending on the available parameter values of the orbiter

and the balloon/parachute. Note down the h value used in this
rp

determination.

,

.

Using either Figure 7 or Figure 8 depending upon which planet or moon

the orbiter is located at, for the value h noted down in the above step,
rp

note down the value of v/h/.

Multiplying the value of the total visibility angle from step 1 with the value

of v/h/from step 2 produces the visibility time in seconds for the

/ \

conditions used in step 1 and 2.

6.0 Useful Gain of Balloon Antenna and Orbiter SIC Range

The antenna gain directed towards the position of the satellite and the range
between the antenna and the satellite will be calculated next. This gain and the

range will be used to compute the link budget for the balloon/parachute telecom

system.

Position of the antenna = A(0,hb)

Position of the Spacecraft = S(a cos(e,) , a Sin(es) )

(6.1)

The range of the satellite, R, from the antenna of the parachute/balloon antenna

for a given position of the satellite will be given by the following expression:

Range _ R = _Ja2+c 2-2acSin(es)

(6.1)

22



E

(R

L_

0

0

C
t_

a.

0
0

C_

0
0

0

0
0

d

(dJ/q)^

0
0

0

0
0

0

0
0



E
0

u)

L_

m

0

0

c_
c-
O
0

LU

C_

Lr_

(-
v

II

e-
,r- m

n

,w
,(

w

0

c_

(dJlq)A

t-

O
O

E

E

U)

$,..

O
c/)

(t)

O

c-
O

O
c-

M,...-

44---

O

O

(:3.

(D

°_

LL.

0_



Many times a normalized range will be necessary in the theory to follow. The
normalized range is defined as the actual range divided by the radius of the

planet/moon around which the orbiter is in a given orbit. This division allows to
normalize the balloon/parachute altitude as well as the orbiter altitude as shown

below in equation (6.2).

Range Normalized _A_RN - R = 1+ + 1+ hb -2 1+ h 1+ hb Sin(es)
- r0

(6.2)

The gain of the balloon/parachute antenna and the range to the satellite can be

used in a telecommunications link budget to calculate the space loss for the link

budget and ultimately, the sustainable bit rate by the link. Using the right triangle
KAS in Figure 2, we obtain:

L KAS S,nl[aC°s  .R
(6.3)

To compute the gain of the antenna at a given position of the satellite we need
the following expression:

e = _: LKAS =

(6.4)

For computing the useful gain for the communications link the following quantities
are computed:

Cos(e) = Cos{= Sin"[aC°s(es)]}=R -(c-aSin(es)) =/aSin(e')-c/R R

(6.5)
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Similarly, the sine of the angle may be found using the following formula:

S,n,0,: S,n{,S,n[aC ""]t; aCos,0,,
(6.6)

The gain of the antenna directed towards the satellite will then be obtained by the
formula given in equation (6.7) below. Note that the angle e used to compute the

gain of the antenna in equation (6.7) is a function of the satellite position es,

altitude of the balloon/parachute hb, and the orbital radius of the spacecraft a.

The relationship between the angle e and the satellite position es is defined in

the equations (6.5) and (6.6).

G(e)

cos(_
2q

-0.000781104- 0.000921702 (-_)+ 0.0926785 (-_) 2- 0.369984 (-_) 3

+ 0.892439 (_/)4- 0.389927 (-_) ' • 0.04814 (-_) 6

(6.7)

• /]2cos(_cos,0,)cos(_
Sin(e )

(6.8)

Where the function f(-_)is given by the following formula:
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2,.0000,01, 000002,702/ ).009267 0/ I
.08  439i 1I

0.369984

+ 0.04814

(6.9)

The link from the balloon/parachute dipole antenna to the orbiter spacecraft
naturally depends upon many parameters; however, the only parameters that are

dependent on the balloon/parachute altitude are the gain of the transmitting

antenna (the dipole) and the range from the transmitting antenna to the orbiting
spacecraft, designated by R. As this altitude changes, the range R becomes a

function of time. This analysis assumes all the other parameters of this scenario

constant. This is not really true in actual practice. The atmospheric loss

parameter for example, does not remain constant and depends upon the actual
length of the path through the atmosphere. We will assume for the sake of the

first approximation that such parameters have a definite value for the
computation of the link between the parachute/balloon and the orbiter but the

values does not change while the satellite is in motion. The major change in the

link budget is due to the change of the range R; the change of the gain of the
antenna due to the satellite position change.

The range R gives the space loss given by the following well-known equation:

SpaceL°ss = (4X)2=R

Space Loss Using Normalized Range
4 _: (RN)

(6.10)

Where the normalized range, RN, is defined in equation (6.2). The antenna gain

pattern provides the useful gain of the antenna in the spacecraft direction. Using

the above equations, the value of the gain directed to the spacecraft multiplied by
the space loss is given by the following formula:

27



SpacexOse,u,:Loss Gain

aSn,0,c ICos( /_/a2+ c 2- 2 a c Sin(e,)

a Cos(e, )

_//a2+ 02- 2 a c Sin(e,)

(6.11)

Equation (6.11) provides the effect of the space loss and the useful gain of the
balloon/parachute directed towards the orbiter spacecraft. This is a useful

formula; however, sometimes it is helpful to convert this formula into the

quantities normalized by the radius of the planet. Using the normalized values of

the parameters 'a' and 'c' (dividing the parameters by radius of the planet) along

with the normalized value of the range RN defined in equation (6.2) we obtain an
equivalent formula given below:

Space Loss Useful / X / 2
Using Normalized x

Range Value Gain 4 _ (RN)

cos -_ t rp rp -cc

(RN)

(6.11a)

It should be noted that the gain function now appears as a function of the orbiter
satellite position angle es. Thus, as the orbiter satellite moves around in its orbit,

a different value of the parachute/balloon antenna gain will be directed towards it

and, of course, the parachute/balloon to the orbiter range changes too. Equations
(6.11) and (6.1 la) incorporate effects of range change as well as antenna useful

gain directed towards the orbiter into one formula that may be used for the link

analysis of the link mentioned above.
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Generally, the altitude of the parachute or the balloon when they are deployed

from the entry vehicle depends upon the experiments to be performed on the

way to the planet's surface or while going around the planet, as the case may be.

If the planet is a gaseous planet, there is another question about the gaseous

absorption of the radiated waves such as the ammonia gas absorbs the most

and the absorption is proportional to the square of the link frequency. Thus, this

consideration may force the telecom engineer to use the UHF frequency because

this has the minimal gaseous absorption. However, the UHF has disadvantage in

that the telecom equipment is larger in weight and volume and the gains of the
antennas of the link are lower which is not made up by the lower space loss due
to the lower frequency.

As the orbiter spacecraft goes around in its orbit, there is a limiting angle at which
it just starts seeing the balloon and goes to the zenith of the balloon and then

repeats the same in a reverse order. This should be quite easily seen in the
Figure 2. One needs the angle es when the orbiter just rises over the horizon of

the balloon above the surface of the planet. This is the limiting angle e,L,r,,and

given by the following expression:

Limiting e, angle = e,u,,,, = _. Cos"/ rp - Cos"/ rpJr0 I

= 2"_ Cos.1 1 1+ hb Cosl__ 1+ h

ro I, r0

(6.12)

Neglecting the surface diffraction, equation (6.11) indicates that the
balloon/parachute dipole antenna gain received by the orbiter must follow the
following rule.

If e, > e,u,,it _ Usable Antenna Gain = Gain Pattern (e s)

If es < esLimi[ :=::) Usable Antenna Gain = 0 (not dB!)

(6.13)
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It should be noted that the limiting value of the spacecraft location angle es

depends on the balloon altitude and the orbital radius of the orbiter; hence, as the

balloon/parachute changes its position with respect to the surface of the planet,

the limiting spacecraft location angle also changes.

Figure 9 plots the useful gain of the antenna directed towards the orbiter from the

balloon/parachute dipole antenna as a function of the spacecraft location angle.

All the parameter values are given in the graph. The plot starts from a limiting

value of the spacecraft location angle described above because below this angle
the orbiter cannot see the balloon/parachute antenna. The orbiter altitude to

planet radius ratio is held constant at 0.5: i.e., the spacecraft altitude is half the
planet's radius. The parameter of the graph is the normalized altitude of the

balloon or the parachute, hJrp. This parameter is varied from 0 to 0.5 in the
particular steps shown in the figure. The useful gain of the dipole antenna located

on the balloon/parachute is reasonably good for the orbiter till the orbiter position

angle of about 65 degrees because for the parameter values given for the plot,

the orbiter spacecraft stays within the (+2 to -3 dB) region of the antenna. At the
time when the orbiter reaches the position angle of 65 degrees, the antenna gain

directed towards the orbiter falls off rapidly. By the time the spacecraft location

angle becomes about 80 degrees, depending on the parameters of the orbit and
altitude selected, the gain falls below-5 dB from the maximum.

Figure 10 is similar to Figure 9 in that it also plots the useful gain of the antenna
directed towards the orbiter from the balloon/parachute dipole antenna as a

function of the spacecraft location angle. However, the parameter of these curves

is the normalized orbiter altitude: i.e., the orbiter altitude divided by the planet's

radius. The balloon/parachute altitude to planet radius ratio is held constant at

0.05, i.e., the spacecraft altitude is 5% of the planet's radius. This parameter is
varied from 0.1 to 1 in the particular steps shown in the figure 10. The plot starts

from the limiting value of the spacecraft position angle depending upon the other

parameter values selected. The figure shows that the useful gain of the

balloon/parachute dipole antenna remains between the (0 to 2 dB) range for

about 70 degrees orbiter spacecraft location angle depending upon the

parameter value selected. At the time when the orbiter reaches the position

location angle of 75 to 80 degrees, the antenna gain directed towards the orbiter

falls off rapidly, and by the spacecraft location angle of about 80 degrees, the

gain falls below -5 dB of the maximum.

Figure 11 plots the normalized range between the orbiter and the
balloon/parachute. The parameter of the graph is the normalized altitude of the

orbiter. The normalized balloon/parachute altitude is held constant to a value of

0., 01. All the normalizations are carried out using the planet radius rpas the
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basis. The figure shows that for any normalized altitude of the orbiter, as the

spacecraft position angle increases fro 0 to 90 degrees, the range between the

orbiter and the balloon decreases. The actual range may easily be obtained by

simply multiplying the value read off from the graph by the planetary radius.

Actual Range (km) =
Value Read /From Figure 11

x Planet Radius (km)

(6.14)

The maximum normalized range is a function of the normalized balloon altitude

and the normalized orbiter altitude. In fact, the maximum normalized range may

be computed using the following formula:

Rm_, _ q/_-r 2 + q/-_-r# = I+ hb - I + I+ _h

r_ r. r.

(6.15)

The maximum range occurs when the line joining the balloon/parachute antenna
center to the focal point of the orbiter antenna becomes tangential to the planet

surface. This equation is plotted in Figure 12 as a function of the normalized

balloon/parachute altitude. The figure shows that for any normalized orbiter

altitude, after an initial small range of normalized balloon/parachute altitude, the
maximum range increases almost linearly. To obtain the actual maximum range,

following equation may be used:

Actual Maximum Range (km) = I Value Read

From Figure 12 J
x Planet Radius (km)

(6.16)

Equations (6.14) and (6.16) provide the means of finding actual quantities when

needed for further analysis.

Figures 13 and 14 plot the space loss using the normalized range given in

Equation (6.15), only in Figure 13 a S-Band (2450 MHz) frequency is used and

Figure 14 uses a UHF (401.6) MHz frequency. It should be remembered that the

number read from these two figures are not the actual space loss, because the

normalized range is used instead of the actual range.
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To obtain the actual dB loss due to the range, use the following formula:

Actual Space Loss (dB) = dB Value Read From / - [(Planet
Figure 13 or Figure 14J

Radius)2](d8 )

(6.17)

To help computation of the actual space loss, Figure 15 is provided. This figure

plots the [(Planet Radius)2]{dB)as a function of the planet radius and shows the

points for the known planets and moons. The same figure may be used if the

planetoid radius is known.

As an example of the use of the equation (6.17), suppose a mission sends a

spacecraft in the Martian atmosphere and the spacecraft that brought the balloon
becomes the orbiter for the balloon link. Suppose the orbiter altitude to Mars

radius ratio is equal to 0.1. It is desired to compute the worst case of space loss

when the balloon altitude to Mars radius is 0.01 for a UHF link (frequency 401

MHz) between the balloon and orbiter.

Figure 12 shows that the worst-case value of the space loss is about -20 dB
when the orbiter position angle is about 58 degrees. Thus, we have obtained the

value for the first quantity of the right hand side of the equation (6.17). Next, the

table in the Figure 15 shows that for Mars the y-axis reads 70.58 dB. This is the
second factor in equation (6.17) to evaluate the space loss. The space loss for

this example is obviously equal to:

Actual Space Loss = -20 - 70.58 = -90.58 (dB)

(6.18)

It will be desirable to see the effect of the useful antenna gain directed towards
the orbiter and the space loss simultaneously on the link. Figure 16 and Figure

17 plot the two quantities multiplied together in terms of decibels for the S-Band

frequency and for UHF frequency. These figures follow the shape of Figure 13
and 14 for most of the part because the loss due to the range is much too large

for the antenna gain to counteract effectively. However, as the spacecraft
position angle becomes larger at which the balloon/parachute antenna gain falls

off much rapidly compared to the reduction of space loss magnitude due to the

reduced range, the product also falls of rapidly. It should be noted that the dipole

antenna is designed for the UHF and S-Band separately: i.e., the same antenna

is not used for both frequencies. Both the figures use the normalized range while
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calculating the space loss; hence, to get actual numbers from these figures, one

needs to follow the procedure outlined in equation (6.17) above: i.e., use the
following equation.

Actual Total Loss (dB) = dB Value Read From
[(Planet

Figure 16 or Figure 17)
Radius)2]/d8 /

(6.19)

The value of second factor in equation (6.19) is obtained from the Figure 15, as

was done before. For the example set up for showing the use of equation (6.17),

the actual total loss, i.e., the space loss and the antenna gain in dB can be
calculated using Figures 15 and 17. For the orbiter altitude to Mars radius ratio of

0.1 and balloon altitude to Mars radius ratio of 0.01 the Figure 17 gives the worst-

case value of total loss of about -34 dB. This is the value for the first quantity of
the right side of equation (6.19). Figure 15 provides the value of 70.58 dB. Thus

the total value of the actual total loss can be found by the following equation.

Actual Total Loss = - 34 - 70.58 = - 104.58 (dB)

(6.20)

7.0 Computation of Sustainable Bit Rate for Balloon - Orbiter Link

To compute the bit rate of a communications link between the balloon/parachute
and the orbiter spacecraft, one needs to define additional link parameters. The

parameters will characterize the balloon/parachute and the orbiter

telecommunications systems. Parameters include system losses for both the

telecom system, antenna pointing loss for the orbiter receiving antenna, and the
system noise temperature for the receiving system etc.

It should be realized that this is not an attempt to make a complete link budget for
the link between the balloon/parachute and the orbiter; rather, the results will be

sufficiently accurate only for a quick bit rate analysis. The parameters mentioned

above and some more are given in the following Table 2 and these will be used
to derive the further results.
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Table 2. Balloon/parachute to orbiter link parameters

Frequency Used

Balloon or parachute altitude/planet radius
Orbiter altitude/planet radius

Balloon or parachute antenna

Balloon or parachute transmit system losses

Transmit system error correcting code
Eb/N0 requirement for a BER = 10 .5

Transmitted RF power

Transmitted signal format

Orbiter receiving antenna

Orbiter receiving antenna efficiency

Receiving system pointing and system losses
Receiver system noise temperature
Boltzmann's constant

Carrier Tracking

Data margin of the link

2250 MHz (S-Band)
0.01

0.1

Dipole with Length = _./2

2dB

R=1/2, k=7 Convolutional Code
4.46 dB

lW

BPSK - Suppressed Carrier
Parabolic reflector.

55%

3dB

400 K = 26.02 dB
-228.6 dB/K

Assume carrier locked

0dB

Using these parameters the following 6 figures (Figure 18 to Figure 23) were
generated. These figures plot the normalized bit rate in dB units as a function of

the orbiter spacecraft position in its orbit for a particular orbiter spacecraft receive
antenna diameter. The data margin is assumed to be 0 dB because the best

possible bit rate is desired. JPL/Mission standards may require a different data

margin and, hence, the curves must be modified accordingly to obtain the
allowable bit rate values.

It should be noted that since the balloon/parachute antenna has a length of = x/2

meters regardless of the frequency of use i.e., the length of the dipole changes
with the frequency and, consequently, the gain of the dipole antenna will be the

same for any frequency. With this assumption the figures 18 to 23 d._£onot change

with the change of frequency. The change in the space loss is cancelled by the

change of gain of the receiving parabolic reflector antenna (constant) while the
transmitting dipole antenna maintains the same gain due to the change in its

length depending upon the frequency. It should be noted that these figures are
drawn assuming that the link starts as soon as the orbiter becomes visible to the
balloon/parachute.

Following is an example of the use of the figures. Suppose one needs to find the

bit rate possible for the conditions given in the above table with a receiver

antenna of 1-meter diameter. This implies that one must use Figure 21 in the 18
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to 23 Figures. From this figure, for the balloon altitude to the planet ratio of 0.01

and for the orbiter altitude to planet radius ratio of 1, we select the highest curve.

For the orbiter position angle to be 70 degrees, the normalized bit rate is read to

be 154 dB. To obtain the real world quantities, we need to add to the number just

obtained the normalization constant in dB. This is done using the following

equation.

Actual Data Rate (dB)=
dB Bit Rate ValueFrom Figures 18 to 23 - [(Planet Radius)2 lCdSi

(7.1)

If we assume that the planet is Mars, Figure 15 provides the value of 70.58 dB

for the normalization constant (the second bracket in Equation 7.1); and this
value must be subtracted from 154 dB. Thus,

Actual Data Rate = 154- 70.58 = 83.42 dB

(7.2)

Thus, the possible maximum bit rate may as large as 10 8.342 bits per second or

approximately 220 Mbps. It should be noted that as the parameter values
change, it is only a simple matter to see the effect of the changed values on the

sustainable data rate. As an example, if the radiated RF power is reduced to 10

mW, because the original computations used 1 W transmitted power to produce

the curves, the current bit rate will be changed to 220 * (10/1000) Mbps, or 2.2

Mbps. Another example could be: if a 3 dB data margin is desired then the actual
data rate in equation (7.2) should be changed to 83.42 - 3 = 80.42 dB and this

equals 108.042 or with a 0 dB margin this will support about 110 Mbps and if a 6

dB data margin is desired then it will support 55 Mbps data rate etc. Note that
this computation for the bit rate supportable by the link is done only at one point

on the orbiter's position: namely 70 degrees. For any other position location

angle, the calculations must be repeated.

8.0 Computation of Data Volume Received on Orbiter.

To compute the total data gathered per pass, one needs to write the equation

(6.11a) as a function of time. This, in turn, implies that the spacecraft position

angle e, be converted into time. This can be done easily considering that the
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orbiter is in a circular orbit and hence the spacecraft speed remains constant

throughout its flight around the parent body. The minimum spacecraft location

angel, esum,, that was defined in the equation (6.12) (which is reproduced below

for convenience) is the starting point for the time, 't': i.e., t=0. The progress of
time is formulated as follows.

Limiting es angle _)sLimit --
2 cos1/r.) coslrr.

rp+h b _r-_h )

Let

/t

- --- C°S"/---_11+h---brp

(8.1)

Satellite Period
a3r2

z_ Tp = 2= --_ (Sec)
q#

(8.2)

The time required for the spacecraft position angle, es, to change from e,L,,,,, to

the current position, e_, can be written down easily because of the uniform speed

of the circular orbit satellite in its flight path.

_)s - 0sLimit 2 = t = 2 = ___A 2 E tn

tn

es = 2 _ to + OsLimit

(8.3)

Where tn is the normalized time. After substituting equation (8.3) into (6.1 la) we
obtain the following equation.
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4 _ (RN)

 h/sin'2 tn 0s'imt'-/l+h /lr ,RN,-Cos   l
)J

1+hi Cos(2 _: t. + e_,i_i,)r.)
(RN)

(8.4)

The normalized time, tn, was defined in the equation (8.3); however, its

connection with the body around which the orbiter is stationed is given below.

, )tn mp 2/I; a3/2 "

,E
1121+ h

rp

(8.5)

With g (tn) = equation (8.4), and using balloon/parachute to orbiter link parameter
values of Table 2 one may write down the equation for the total bits generated in

a pass of the orbiter. It should be noted that we have assumed (as was done

previously) that the velocity of the balloon/parachute is negligible with respect to
the visibility time of the orbiter. In that case, the total visibility time would be twice

the time the satellite needs to go from esL_r,,,to _ /2.

4 2x(" (GL)10-Amount of
: 2 I g(tn) 10 dt n

Bits Gathered !

0

(8.6)

Where the parameter GL is defined using the parameters defined in the Table 2
as follows:
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GL = - OrbiterSystemLoss(dB)- BalloonSystemLoss(dB)- Reqd.EbON0(dB)+

AtmosphericLoss(dB) + 10* Log10(PowerTransmitted)(dB)+

OrbiterAntennaGain (dB) + 228.6- 10"Log_o(Teq)

(8.7)

One important assumption about the orbiter antenna is that the antenna pointing
of the orbiter antenna is done perfectly. One possible way this can be done is the

proper use of the balloon/parachute position knowledge with respect to the

orbiter. Another way of achieving the same thing is by providing a pilot beacon on

the balloon/parachute that always transmits and the orbiter senses this pilot and
orients its antenna towards that direction automatically.

Equation (8.6) is plotted in Figure 24 as a function of the ratio orbiter

altitude/radius of the planet, (h/rn). The figure shows that the bits accumulated by

the orbiter becomes gradually less as the parameter h/r n increases. This is due to
the fact that as the altitude of the orbiter increases, the space loss increases and
at the same time the antenna gain directed towards the orbiter decreases.

The amount of bits gathered using equation (8.6) are the data using the
normalized quantities for the space loss and the orbiter period. Thus, to use the

number obtained from equation (8.6), one needs to multiply a constant given
below:

/ 1'2Normalization = 2 = h1 + --
Constant r,

(8.9)

This constant will be different for different planets and their moons. Figure 25
shows the normalization constant in dB for each planet and major moons of the

solar system. Following is an example of computation of the total data bits

received from the balloon/parachute at the orbiter. Suppose the balloon is
descending in Venus's atmosphere and the orbiter is atan altitude of 0.5 Venus

radii, i.e., h/rp = 1/2. Also the antenna carried by the orbiter is the parabolic

reflector antenna of diameter 0.25 m (25 cm) and according to our previous

assumptions, is automatically pointed to the balloon/parachute position. This

automatic pointing of the orbiter antenna implies automatic tracking of the
balloon/parachute as the relative positions between the balloon/parachute and
the orbiter changes.
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With all the assumptions given in Table 2 for the link between the

balloon/parachute held valid, the total number of normalized bits accumulated by

the orbiter is read from Figure 24 to be t52 dB. To convert this into the real data

collected, Figure 25 gives for the h/rp of 0.5 and for the planet Venus a value of
the normalization constant of-36 dB. Thus, the total actual data gathered by the

orbiter at 0.5 h/rp equals 152 - 36 = 116 dB, or equal to 101_6bits. It should be

noted that if the actual values used in the link budget between the orbiter and the

balloon is different than the assumptions, the results obtained may be scaled

appropriately to get the correct results. For instance, if the actual transmitted RF

watts is, as an example, 1 mW, then, since the assumptions that produced the

figure 25 has the transmitted RF watts to be 1 W, the true value of the total data
gathered by the orbiter will be 10 ''6 x 103 = 108.6bits etc.

9.0 Balloon/parachute Oscillations

It is conceivable that the balloon or the parachute carrying the telecom and

science package may execute oscillations while descending to the body's (planet
or the moon as the case may be) surface. This is mainly due to the presence of

the atmosphere as well as the atmospheric winds. The above analysis has

ignored this problem; i.e., the analysis is valid for a perfectly still atmosphere

through which the balloon or the parachute is descending. In a sense, this is the

'mean' or the 'average' result of the case with oscillations and a new theory must

be developed to fathom the details of the oscillatory case. This is attempted
below.

Assumptions for the oscillations

The oscillations will be small in nature (e.g., the end-to-end

oscillations will not cover more than 40 degrees from its vertical

position).

• The balloon/parachute assembly does not move considerably in the

vertical direction during each oscillation period.

The oscillations described by the balloon/parachute assembly may

be approximated by the classical pendulum motion: i.e., all the mass

of the assembly is concentrated in its gondola and the length of the
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pendulum string is equal

balloon/parachute assembly.

to the height of the inflated

For the first degree of approximation, it will be assumed that the

atmosphere does not put a damping force on the oscillations (this is

not true in actual practice; however, the results obtained by using

this assumption may not be too different from the actual results).

Oscillation Theory

Figure 27 shows the balloon/parachute as a pendulum; the necessary

parameters to describe the motion are shown in the figure.

We will start with the well-known classical equation describing the motion of a
pendulum given below. It is assumed that the balloon/parachute executes

vibrations with the center of the balloon/parachute shown in the figure as the

pivot. Following parameters are assumed.

The distance between the pivot L (m)

and the center of gondola mass

Mass of the oscillating gondola M (kg)

Rotational inertia of the gondola ML2

around the pivot

Angel of oscillation

Planet's gravitational acceleration gp (m/sec 2)

Equation of pendulum:

ME _ = - M gp L Sin[@ (t)]

(9.1)
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Figure 27. Balloon/parachute as a pendulum.
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Hence,

d2[(_(t)]=dt2 -/-_-/Sin[_(t)l

(9.2)

The solution to this differential equation is not very simple and is very difficult to

use. As was mentioned above, in the assumptions that the total oscillation angle

is below 40 degrees (which is a very practical assumption), the approximation

Sin(x) _= x may be used. Using this approximation, equation (9.2) reduces to the

one shown in (9.3) and now a simple harmonic solution does exist.

d2[¢ (t)] - [-_) (I)(t)dt2

(9.2)

The solution to this linear differential equation is easy to find and is given below,

where (1)(0) and (I)(0) are the initial conditions of the balloon/parachute

oscillation scenario.

0,t,:0,0,cosily/ 1+0,0,Sin[/ ltI
(9.3)

Figure 28 plots e (t) given by the equation (9.3) for L = 10m, 20m, and 30 m for

Earth. One may notice that as the length of the pendulum increases, the period
also increases.

Even though the angle _)(t) is with respect to the vertical line passing through the

pivot, considering the dimensions of the orbital elements and the altitude of the

balloon/parachute compared to the dimensions of the balloon, the vertical

antenna will be assumed to be tilting by the same angle in both directions. The

points B(x_, y,)and C(x2, y2)must be changed to accommodate the pendulum like

motion of the balloon/parachute.
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Figure 28. Balloon/parachute pendulum motion.

The point B'(x 1 (t), Yl (t)) is the point B(x,, y,) in Figure 2, including the pendulum -

like displacement of the radiating antenna and similarly, the point C(x 2 (t), Y2(t))

is the point C(x 2, Y2) in Figure 2, including the pendulum-like displacement of the

radiating antenna. These points are given by the following formulas:

(

.[ rn'(t)cx,,(t) = 1 + (m'(t)) 2
k.

I/m tlc1 a202+ 4-

1 + (rn'(t)) _ 1 + (rn'(t)) 2
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Cy (t) = 1 + (m'(t)) 2
+ m(t)/Illm'(t)c /2+ (m(t))2

a 2 c 2

1+ (m(t))_

Similarly, one may compute the second point:

(9.4)

X 2.

(

= / m' (t) c

[1 + (m'(t)) 2

-,2
m'(t) c / a2 - c2

+ (m'(t)) =j + 1 + (m'(t)) 2

Y2' - rn' (t) I/ 1 82_021 + (rn'(t)) 2 + 1 + (m'(t)) 2

(9.5)

Where,

m'(t) = Tan(o_ + ¢(t))

(9.6)

The angles provides the angle from the boresite of the antenna (the maximum

gain direction) for which the communications between the satellite and the

gondola can be sustained, as before.

The visibility of the satellite may start from the satellite position (X_m_t,Yt_m_t)tothe

zenith of the balloon/parachute (see Figure 2). The visibility due to the other side

of the satellite orbit beyond zenith is the same as the side under consideration

and, hence, can be taken into account by doubling the visibility time later on (see

the assumptions). Thus one is interested in the angle z AOD in the figure. This

angle is obtained by the following formula:

ZAOD = Cos"[Ol_.___._llOo---_l]= C°s"[0x"m"+ cY"m't]=ca Cos"[_]
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(9.7)

Where the (X_r_t, Ylimit) coordinates of the limiting position of the visibility are given

in equation (5.11). Using (9.7) along with the definition of mlimit given in (5.10),
one obtains:

Where,

Z AOD =

(9.8)

rp _ 1 and rp _ 1

1+ hb a 1+ h
rp rp

(9.9)

With the help of equations (9.8) and (9.9), the position of the satellite at any time

't' in the visibility region, S(xs(t), ys(t)), may be found using the following formula:

0 < t < (ZAOD)Tp2=

S(x,(t), ys(t)) = S/a.Cos  ,OD"+,,,,2(2 )tI •a 2
(9.10)

Where z AOD is defined in equation (9.7) and Tp, the orbital period of the satellite

is given in equation (5.16) above. Note that at t = 0, the equation (9.10) reduces
to the satellite position (Xlirn_t,Y_im_t),as can be seen from Figure 2.
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The visibility and establishment of the link now depends upon the satellite being

seen by the gondola of the parachute or balloon in this dynamic situation. The

visibility can be determined using the following condition:

(x,(t)_<x,(t)_<x2(t) ) CI (x,(t)
< x,(t) < x2(t ) )}TRUEFALSE

Orbiter is Visible

Orbiter is not Visible

(9.11)

It should be noted that the visibility of the orbiter from the balloon/parachute
gondola now depends upon the initial condition of the balloon/parachute

oscillatory motion as well as the position of the orbiter at that instant of time. A

more detailed analysis may be performed, as was done for the non-oscillatory

case; however, if the oscillations are small, the theory developed above will still
be applicable.

This investigation into the balloon/parachute communications with an already

existing orbiter spacecraft has the conclusions that follow.

10.0 Conclusions

A unified theory of telecommunications between a balloon/parachute to an orbiter

using a dipole antenna is presented. The theory assumes that the transmitter and
the receiver are both in the orbital plane of the orbiter. Presentation shows

methods to calculate the following quantities:

• Relative positions of the balloon/parachute and the orbiter.

• Visibility time of the orbiter at the balloon/parachute for a defined

gain angle of the dipole transmitting antenna.

Useful dipole gain value directed towards the orbiter and the

balloon/parachute to orbiter range value at any point of the orbiter's
orbit.
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Computation of the maximum sustainable bit rate between the

balloon/parachute to orbiter link at any relative positions of the two

for different antenna diameters of the orbiter parabolic reflector
antenna.

• Maximum attainable total received data bits at the orbiter.

The whole theory is presented in a manner such that the results produced may
be applied to the balloon/parachute being at any planet of the solar system or the
moons considered. Clear examples are given for the users to obtain the desired
results quickly and efficiently.
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